IRF-7, a new interferon regulatory factor associated with Epstein-Barr virus latency.

نویسندگان

  • L Zhang
  • J S Pagano
چکیده

The Epstein-Barr virus (EBV) BamHI Q promoter (Qp) is the only promoter used for the transcription of Epstein-Barr virus nuclear antigen 1 (EBNA-1) mRNA in cells in the most restricted (type I) latent infection state. However, Qp is inactive in type III latency. With the use of the yeast one-hybrid system, a new cellular gene has been identified that encodes proteins which bind to sequence in Qp. The deduced amino acid sequence of the gene has significant homology to the interferon regulatory factors (IRFs). This new gene and products including two splicing variants are designated IRF-7A, IRF-7B, and IRF-7C. The expression of IRF-7 is predominantly in spleen, thymus, and peripheral blood leukocytes (PBL). IRF-7 proteins were identified in primary PBL with specific antiserum against IRF-7B protein. IRF-7s can bind to interferon-stimulated response element (ISRE) sequence and repress transcriptional activation by both interferon and IRF-1. Additionally, a functional viral ISRE sequence, 5'-GCGAAAACGAAAGT-3', has been identified in Qp. Finally, the expression of IRF-7 is consistently high in type III latency cells and almost undetectable in type I latency, corresponding to the activity of endogenous Qp in these latency states and the ability of the IRF-7 proteins to repress Qp-reporter constructs. The identification of a functional viral ISRE and association of IRF-7 with type III latency may be relevant to the mechanism of regulation of Qp.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interferon regulatory factor 7: a key cellular mediator of LMP-1 in EBV latency and transformation.

Interferon regulatory factor 7 (IRF-7) was cloned within the biological context of Epstein-Barr virus (EBV) latency, and has an intimate relation with EBV. EBV latent membrane protein 1 (LMP-1) regulates IRF-7 both by inducing the expression of IRF-7 and by activating IRF-7 protein through phosphorylation and nuclear translocation in a post-translational manner. The activated IRF-7 then functio...

متن کامل

Interferon regulatory factor 7 is induced by Epstein-Barr virus latent membrane protein 1.

Infection by Epstein-Barr virus (EBV) generates several types of latency with different profiles of gene expression but with expression of Epstein-Barr nuclear antigen 1 (EBNA-1) in common. The BamHI Q promoter (Qp) is used for the transcription of EBNA-1 mRNA in type I latency, which is an EBV infection state exemplified by Burkitt's lymphoma (BL). However, Qp is inactive in type III latency, ...

متن کامل

Interferon regulatory factor 7 is associated with Epstein-Barr virus-transformed central nervous system lymphoma and has oncogenic properties.

Interferon regulatory factor 7 (IRF-7) is implicated in the regulation of Epstein-Barr virus (EBV) latency. EBV transforms primary B cells, and the major EBV oncoprotein, latent membrane protein 1 (LMP-1), is required for the process. LMP-1 both induces the expression of IRF-7 and activates the IRF-7 protein by phosphorylation and nuclear translocation. Here we report that the expression of IRF...

متن کامل

Interferon regulatory factor 4 is involved in Epstein-Barr virus-mediated transformation of human B lymphocytes.

Epstein-Barr virus (EBV) infection is associated with many human malignancies. In vitro, EBV transforms primary B lymphocytes into continuously growing lymphoblastoid cell lines. EBV latent membrane protein 1 (LMP-1) is required for EBV transformation processes. Interferon regulatory factor 4 (IRF-4) is a transcription factor and has oncogenic potential. We find that high levels of IRF-4 are as...

متن کامل

Dual Functions of Interferon Regulatory Factors 7C in Epstein-Barr Virus–Mediated Transformation of Human B Lymphocytes

Epstein-Barr virus (EBV) infection is associated with several human malignancies. Interferon (IFN) regulatory factor 7 (IRF-7) has several splicing variants, and at least the major splicing variant (IRF-7A) has oncogenic potential and is associated with EBV transformation processes. IRF-7C is an alternative splicing variant with only the DNA-binding domain of IRF-7. Whether IRF-7C is present un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 17 10  شماره 

صفحات  -

تاریخ انتشار 1997